Tetrahedron Letters 49 (2008) 6889-6892

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Cebulactams A1 and A2, new macrolactams isolated from *Saccharopolyspora cebuensis*, the first obligate marine strain of the genus *Saccharopolyspora*

Sheila Marie Pimentel-Elardo^{a,†}, Tobias A. M. Gulder^{b,†}, Ute Hentschel^{a,*}, Gerhard Bringmann^{b,*}

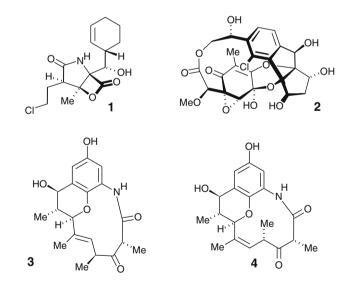
^a Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
 ^b Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

ARTICLE INFO

Article history: Received 27 August 2008 Revised 15 September 2008 Accepted 17 September 2008 Available online 20 September 2008

Keywords: Saccharopolyspora Marine natural products Secondary metabolites Macrolactams

ABSTRACT


The new macrolactams cebulactams A1 and A2 were isolated from an extract of the first obligate marine strain of the genus *Saccharopolyspora*. Their constitutionally identical structures, each bearing a six-membered cyclic ether as part of the macrocycle, and their relative configurations were elucidated by MS methods and by 1D and 2D NMR techniques.

© 2008 Elsevier Ltd. All rights reserved.

Terrestrial actinomycetes have proven to be a highly productive source of novel secondary metabolites.¹ However, due to the exhaustive scientific interest in these bacteria, the isolation of new chemical structures from actinomycetes has become a difficult task.² Diverse strategies to overcome this problem have been pursued, leading to the development of effective methods for dereplication and online structure elucidation by combining modern chromatographic and spectroscopic methods^{3–8} as well as to improvements of culturing techniques for unusual microbes.^{9,10} In recent years, marine actinomycetes have emerged as a particularly rich source of new secondary metabolites,^{11,12} as demonstrated by the isolation of highly bioactive molecules derived from obligate marine bacteria, such as salinosporamide A (**1**)¹³ and sporolide A (**2**).¹⁴

We have recently described the isolation and phylogenetic identification of a new species, *Saccharopolyspora cebuensis* type strain SPE 10-1, derived from the sponge *Haliclona* sp. collected by scuba diving offshore Cebu, Philippines.¹⁵ This strain was found to require at least 25% artificial seawater for growth, showing that it is the first obligate marine strain of the genus *Saccharopolyspora*.¹⁵ We herein describe the isolation and structural elucidation of two novel, constitutionally identical macrolactams, cebulactams A1 (**3**) and A2 (**4**), from this marine bacterium (Fig. 1).

[†] These authors contributed equally to this work.

Figure 1. Structures of natural products isolated from obligate marine bacteria: salinosporamide A (1), sporolide A (2), and the herein described cebulactams A1 (3) and A2 (4).

HPLC–UV analysis of the extract of a culture filtrate of SPE 10-1¹⁶ showed two prominent peaks in the polar region of the chromatogram. The UV spectra of these metabolites were almost identical, both exhibiting a strong maximum at 215 nm. In addition, the faster eluting metabolite, **3**, had an absorption maximum at

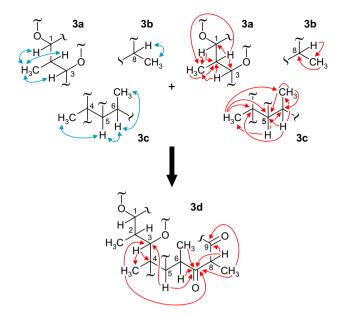
^{*} Corresponding authors. Tel.: +49 931 888 5323; fax: +49 931 888 4755 (G.B.); tel.: +49 931 31 2581; fax: +49 931 31 2578 (U.H.).

E-mail addresses: ute.hentschel@mail.uni-wuerzburg.de (U. Hentschel), bringman@chemie.uni-wuerzburg.de (G. Bringmann).

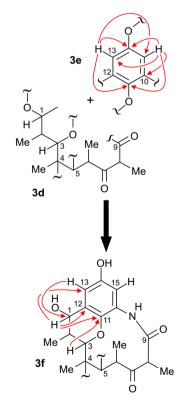
^{0040-4039/\$ -} see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.09.094

291 nm, which was bathochromically shifted to 303 nm in the case of compound **4**. HPLC–ESI-MS analysis revealed the molecular masses of **3** and **4** to be identical (m/z 346.3 for [M+H]⁺), suggesting the two compounds to be structurally highly similar to each other. These assumptions were further corroborated by HR-ESIMS (TOF) measurements, using the pure compounds as obtained by preparative HPLC,¹⁷ which clearly showed an identical molecular formula of C₁₉H₂₃NNaO₅ (m/z 368.1478 for [M+Na]⁺, calcd 368.1468) for **3** and **4**.

The ¹H NMR spectrum of **3** revealed the presence of 13 signals: besides three doublets of aliphatic methyl groups ($\delta_{\rm H}$ 1.00, 1.19, and 1.21) and a singlet of a methyl group attached to a double bond ($\delta_{\rm H}$ 1.86), the signals of five aliphatic CH functions ($\delta_{\rm H}$ 1.82, 3.19, 3.43, 4.27, and 4.38), three hydrogens attached to sp²-hybridized carbon atoms ($\delta_{\rm H}$ 4.98, 6.65, and 7.02), and of a broad, hetero-atom bound proton ($\delta_{\rm H}$ 7.88) were visible. In the ¹³C NMR spectrum of **3**, all expected 19 signals were detectable. Besides the respective resonances for the proton-bearing carbon atoms, which were assigned by analysis of the HMQC NMR spectrum of **3** (Table 1), three sp² ($\delta_{\rm C}$ 111.1, 114.0, and 124.7) and two oxygen-substituted sp² carbons ($\delta_{\rm C}$ 142.7 and 154.4), as well as the resonances of a carboxy or carbamide function ($\delta_{\rm C}$ 173.9) and a keto group ($\delta_{\rm C}$ 207.1), were observed.


Analysis of COSY (\leftrightarrow) and HMBC (\rightarrow) correlations facilitated the elucidation of three partial structures **3a–c** (Fig. 2). The assembly of these molecular parts to give **3d** was possible using HMBC interactions from H-3 to C-4 and Me-4, from Me-4 to C-3 and C-7, from H-5 to C-3 and C-7, from H-6 to Me-6 and C-7, and from H-8 to Me-8, C-7, and C-9.

The aromatic protons H-13 ($\delta_{\rm H}$ 7.02) and H-15 ($\delta_{\rm H}$ 6.65) showed a coupling constant of 2.8 Hz, suggesting these two atoms being located in *meta*-positions to each other. HMBC interactions from H-13 to C-11, C-14, and C-15, and from H-15 to C-10, C-11, C-13, and C-14 led to partial structure **3e** (Fig. 3). Further HMBC correlations from H-13 to C-1 in **3d** and from H-1 to C-11, C-12, and C-13 in **3e** allowed the connection of these two molecular portions. A strong HMBC cross peak between H-3 and C-11 as well as the chemical shifts of C-3 (δ_C 87.4) and C-11 (δ_C 142.7) clearly evidenced an additional connection of **3d** and **3e** via a cyclic ether. Comparison of the calculated molecular mass of the resulting working structure with the experimentally observed MS data for **3** indicated that a nitrogen atom and three protons were still missing. Partial structure **3f** thus bears hydroxy groups, both at C-1 and


Table 1

NMR spectroscopic data of cebulactam A1 (**3**) in acetone- d_6 (¹H: 400 MHz; ¹³C: 100 MHz)

Position	δ_{C}	$\delta_{\rm H}$, mult	COSY (J in Hz)	HMBC	NOESY
1	70.9	4.38 d	2 (10.1)	2, Me-2, 3, 11, 12, 13	Me-2
2	42.4	1.82 m	Me-2, 1, 3	1, Me-2, 3, 12	5
Me-2	16.7	1.19 d	2 (6.6)	1, 2, 3	1, 3
3	87.4	4.27 d	2 (8.5)	2, Me-2, 4, Me-4, 5, 11	Me-2
4	140.5				
Me-4	19.3	1.86 s	5	3, 4, 5, Me-6, 7	6
5	124.7	4.98 d	Me-4, 6 (9.8)	3, Me-4, 6, 7	2, Me-6, 8
6	46.2	3.19 m	Me-6, 5	4, 5, Me-6, 7	Me-4
Me-6	17.8	1.00 d	6 (6.3)	5, 6, 7	5, 8
7	207.1				
8	48.2	3.43 q	Me-8 (6.8)	7, Me-8, 9	5, Me-6
Me-8	16.6	1.21 d	8 (6.8)	7, 8, 9	
9	173.9				
10	131.0				
11	142.7				
12	140.9				
13	111.1	7.02 d	(2.8)	1, 11, 14, 15	
14	154.4				
15	114.0	6.65 d	(2.8)	10, 11, 13, 14	
NH		7.88 br			

Figure 2. Assembly of partial structures **3a–c** to give **3d** using COSY (\iff) and HMBC (\implies) interactions.

Figure 3. Connection of the molecular portions **3d** and **3e** using HMBC correlations (\rightarrow) to give the extended partial structure **3f**.

at C-14, and a nitrogen function at C-10 forming an amide bond with the carbonyl C-9 (Fig. 3).

The configuration at the double bond between C-4 and C-5 and the relative configurations at the stereocenters at C-1, C-2, C-3, C-6, and C-8 in **3** were investigated by NOESY-NMR spectroscopy. Me-4 and H-5 did not exhibit any cross coupling, thus indicating the geometry of the respective double bond to be *trans*. Strong couplings between H-1 \leftrightarrow Me-2 \leftrightarrow H-3 clearly evidenced their spatial

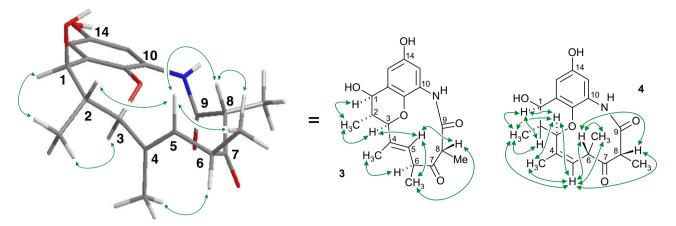


Figure 4. Double bond and relative configurations in cebulactam A1 (3) and A2 (4) as elucidated by NOESY interactions (\leftrightarrow).

arrangement on the same side of the macrocycle. Correlations between H-2 \leftrightarrow H-5 and H-5 \leftrightarrow Me-6 \leftrightarrow H-8 \leftrightarrow H-5 on the one hand, and Me-4 \leftrightarrow H-6 on the other defined the relative position of these groups in the molecule, leading to the overall relative stereostructure **3** for cebulactam A1 (Fig. 4). The observed large coupling constants between H-1 and H-2 (10.1 Hz), H-2 and H-3 (8.5 Hz), and between H-5 and H-6 (9.8 Hz) fully supported this conclusion.

The NMR spectra of the slower-eluting peak **4** (Table 2) were closely related to those recorded for cebulactam A1 (**3**), the decisive difference between these compounds being found in the NOESY data. This time, the substituents located at the double bond, Me-4 and H-5, exhibited a strong cross peak, evidencing the double bond to be cis-configured in cebulactam A2 (**4**, Fig. 4), all other details, including the full relative configuration, being identical for **4** and **3**.¹⁸

Cebulactams A1 (**3**) and A2 (**4**) thus represent constitutionally identical marine derived macrolactams with a unique cyclic ether connecting the aromatic ring system to the highly functionalized, polyketide-derived carbon chain. The only structurally related secondary metabolites known so far are compounds isolated from *Pseudonocardia* Q-1047.^{19–21} These natural products, however, are all lacking the cyclic ether structural motif. Instead, they bear either a *para* dihydroxylated aromatic ring system, or the respec-

Table 2

NMR spectroscopic data of cebulactam A2 (**4**) in acetone- d_6 (¹H: 400 MHz; ¹³C: 100 MHz)

Position	δ_{C}	$\delta_{\rm H}$, mult	COSY (J in Hz)	НМВС	NOESY
1	70.8	4.36 d	2 (10.1)	2, Me-2, 3, 11, 12, 13	2, Me-2, 3
2	46.2	1.51 m	Me-2, 1, 3	1, Me-2, 3, 12	1, Me-2
Me-2	15.0	1.15 d	2 (6.6)	1, 2, 3	1, Me-2, Me-4, 5
3	86.2	4.24 d	2 (10.0)	2, Me-2, 4, Me-4, 5, 11	Me-2
4	145.4				
Me-4	19.8	2.02 s	5	3, 4, 5	3, 5
5	125.1	5.07 d	Me-4, 6 (10.5)	3, Me-4, 6, 7	Me-2, 3, Me-4, 6,
					Me-6, 8
6	48.3	3.34 m	Me-6, 5	4, 5, Me-6, 7	5, Me-6, 8
Me-6	16.9	0.99 d	6 (6.8)	5, 6, 7	5, 6
7	205.2				
8	55.6	3.97 q	Me-8 (6.7)	7, Me-8, 9	5,6
Me-8	15.1	1.27 d	8 (6.7)	7, 8, 9	
9	173.3				
10	130.4				
11	139.5				
12	138.1				
13	107.3	6.76 d	(2.8)	1, 11, 14, 15	
14	153.4				
15	110.9	6.83 d	(2.8)	10, 11, 13, 14	
NH		8.61 br			

tive oxidized benzoquinone, and additionally are in part further functionalized by O-glycosidation at the C-1 hydroxy function. Interestingly, the compounds isolated from Q-1047 display remarkable antioxidant activities.^{19–21} The evaluation of the biological potential of cebulactams A1 (**3**) and A2 (**4**) is in progress.

Acknowledgments

We gratefully acknowledge the College of Pharmacy, University of San Carlos, Philippines for providing type strain SPE 10-1. This work was supported by the DFG (Deutsche Forschungsgemeinschaft), SFB 630: Recognition, Preparation, and Functional Analysis of Agents against Infectious Diseases (projects A2 to G.B. and A5 to U.H.), the Fonds der Chemischen Industrie and the International Foundation for Science (F/3615-1 to S.P.E.).

References and notes

- 1. Berdy, J. J. Antibiot. 2005, 58, 1–26.
- Fenical, W.; Baden, D.; Burg, M.; de Goyet, C. V.; Grimes, J. D.; Katz, M.; Maruc, N. H.; Pomponi, S.; Rhines, P.; Tester, P.; Vena, J. In From Monsoons to Microbes: Understanding the Ocean's Role in Human Health; Fenical, W., Ed.; National Academic Press, 1999; pp 71–86.
- Blitzer, J.; Köpcke, B.; Stadler, M.; Hellwig, V.; Ju, Y.-M.; Seip, S.; Henkel, T. Chimia 2007, 61, 332–338.
- 4. Sashidhara, K. V.; Rosaiah, J. N. Nat. Prod. Commun. 2007, 2, 193-202.
- 5. Wolfender, J.-L.; Hostettmann, K. L. Curr. Org. Chem. 1998, 2, 575–596
- Bringmann, G.; Wohlfarth, M.; Rischer, H.; Heubes, M.; Saeb, W.; Diem, S.; Herderich, M.; Schlauer, J. Anal. Chem. 2001, 73, 2571–2577.
- Bringmann, G.; Lang, G. In Sponges (Porifera); Müller, W. E. G., Ed.; Springer, 2003; pp 89–116.
- Bringmann, G.; Gulder, T. A. M.; Reichert, M.; Gulder, T. Chirality 2008, 20, 628– 642.
- 9. Connon, S. A.; Giovannoni, S. J. Appl. Environ. Microbiol. 2002, 68, 3878-3885.
- Nichols, D.; Lewis, K.; Orjala, J.; Mo, S.; Ortenberg, R.; O'Connor, P.; Zhao, C.; Vouros, P.; Kaeberlein, T.; Epstein, S. S. Appl. Environ. Microbiol. 2008, 74, 4889– 4897.
- 11. Lam, K. S. Curr. Opin. Microbiol. 2006, 9, 245-251.
- 12. Fenical, W.; Jensen, P. R. Nat. Chem. Biol. 2006, 2, 666-673.
- Fehling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. Angew. Chem., Int. Ed. 2003, 42, 355–357.
- Buchanan, G. O.; Williams, P. G.; Feling, R. H.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. Org. Lett. 2005, 7, 2731–2734.
- Pimentel-Elardo, S. M.; Tiro, L. P.; Grozdanov, L.; Hentschel, U. Int. J. Syst. Evol. Microbiol. 2008, 58, 628–632.
- 16. Cultivation conditions: 100 µl of a glycerol stock of SPE 10-1 were inoculated in 3 × 100 ml of ISP 2 medium (per l of artificial seawater: yeast extract 4 g, malt extract 10 g, dextrose 4 g), incubated with shaking at 180 rpm at 30 °C for 5 d. An aliquot of 50 ml of the inoculum was then transferred to 6 × 750 ml of fresh ISP 2 medium, and the cultures were incubated under the same conditions for further 7 d. After incubation, methanol was added to each culture (1:2) with shaking at 20 °C overnight. The resulting mixtures were filtered and extraction with half-volume of ethyl acetate was done twice. The ethyl acetate layers were separated and dried by rotary evaporation.
- 17. The isolation of compounds **3** and **4** was carried out by preparative HPLC (Merck Chromolith SemiPrep RP18e 10×100 mm) using H₂O + 0.05% TFA (A)

and MeCN + 0.05% TFA as the solvents, and the following gradient: flow 10 ml/min; 0 min 75% B, 10 min 75% B yielding 5.1 mg of $\bf 3$ (R_t = 2.5 min) and 4.1 mg of **4** (R_t = 4.3 min).

18. The occurrence of the *E* and the *Z* isomer of the C-4/C-5 double bond in cebulactams A1 (3) and A2 (4), respectively, might hint at a possible interconversion of these compounds, either induced by unsuitable isolation conditions or simply catalyzed by light. This, however, seems to be excluded, because the pure isomers, **3** and **4**, are configuratively stable under the isolation conditions and, hence, their ratio did not change significantly when using different workup protocols.

- 19. Yazawa, H.; Imai, H.; Suzuki, K.; Kadota, S.; Saito, T. U.S. Patent 4,912,215, 1990.
- Imai, Y.; Yazawa, S.; Saito, T. Japanese Patent JP01168671, 1989.
 Imai, Y.; Yazawa, S.; Suzuki, K.; Yamaguchi, Y; Shibazaki, M.; Saito, T. Japanese Patent JP01106884, 1989.